Photostimulated desorption performance of the future circular hadron collider beam screen
Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c76897feaf5145d39cc360fde9fd8e79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c76897feaf5145d39cc360fde9fd8e79 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c76897feaf5145d39cc360fde9fd8e792021-11-10T15:05:08ZPhotostimulated desorption performance of the future circular hadron collider beam screen10.1103/PhysRevAccelBeams.24.1132012469-9888https://doaj.org/article/c76897feaf5145d39cc360fde9fd8e792021-11-01T00:00:00Zhttp://doi.org/10.1103/PhysRevAccelBeams.24.113201http://doi.org/10.1103/PhysRevAccelBeams.24.113201https://doaj.org/toc/2469-9888Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In the case of the future circular hadron collider (FCC-hh), a Cu-coated beam screen (BS) operating in the range of 40–60 K has been designed with the aim of protecting the superconducting magnet cold bores from direct synchrotron irradiation. In order to experimentally study the FCC-hh BS vacuum and cryogenic performance, two sample prototypes were manufactured and installed in the beam screen test-bench experiment (BESTEX) at the Karlsruhe Research Accelerator (KARA) at the Karlsruhe Institute of Technology (KIT). The emitted SR has a critical energy of 6.2 keV, very similar to the 4.6 keV of FCC-hh. Irradiation at both room (RT) and cryogenic (77 K) temperatures showed a significant reduction of the molecular photostimulated desorption yields (η) of the FCC-hh beam screen compared to those of Cu samples. A first approximation of η and its evolution with the photon dose accumulated on the FCC-hh BS prototype at 77 K allows to estimate that a machine conditioning period of ∼1.2 months would be needed to reduce the photostimulated molecular density at the necessary levels to ensure a 100 h beam lifetime at nominal FCC-hh operation.L. A. GonzálezV. BaglinP. ChiggiatoC. GarionR. KersevanS. CasalbuoniA. GrauD. Saez de JaureguiI. BellafontF. PérezAmerican Physical SocietyarticleNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENPhysical Review Accelerators and Beams, Vol 24, Iss 11, p 113201 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
spellingShingle |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 L. A. González V. Baglin P. Chiggiato C. Garion R. Kersevan S. Casalbuoni A. Grau D. Saez de Jauregui I. Bellafont F. Pérez Photostimulated desorption performance of the future circular hadron collider beam screen |
description |
Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In the case of the future circular hadron collider (FCC-hh), a Cu-coated beam screen (BS) operating in the range of 40–60 K has been designed with the aim of protecting the superconducting magnet cold bores from direct synchrotron irradiation. In order to experimentally study the FCC-hh BS vacuum and cryogenic performance, two sample prototypes were manufactured and installed in the beam screen test-bench experiment (BESTEX) at the Karlsruhe Research Accelerator (KARA) at the Karlsruhe Institute of Technology (KIT). The emitted SR has a critical energy of 6.2 keV, very similar to the 4.6 keV of FCC-hh. Irradiation at both room (RT) and cryogenic (77 K) temperatures showed a significant reduction of the molecular photostimulated desorption yields (η) of the FCC-hh beam screen compared to those of Cu samples. A first approximation of η and its evolution with the photon dose accumulated on the FCC-hh BS prototype at 77 K allows to estimate that a machine conditioning period of ∼1.2 months would be needed to reduce the photostimulated molecular density at the necessary levels to ensure a 100 h beam lifetime at nominal FCC-hh operation. |
format |
article |
author |
L. A. González V. Baglin P. Chiggiato C. Garion R. Kersevan S. Casalbuoni A. Grau D. Saez de Jauregui I. Bellafont F. Pérez |
author_facet |
L. A. González V. Baglin P. Chiggiato C. Garion R. Kersevan S. Casalbuoni A. Grau D. Saez de Jauregui I. Bellafont F. Pérez |
author_sort |
L. A. González |
title |
Photostimulated desorption performance of the future circular hadron collider beam screen |
title_short |
Photostimulated desorption performance of the future circular hadron collider beam screen |
title_full |
Photostimulated desorption performance of the future circular hadron collider beam screen |
title_fullStr |
Photostimulated desorption performance of the future circular hadron collider beam screen |
title_full_unstemmed |
Photostimulated desorption performance of the future circular hadron collider beam screen |
title_sort |
photostimulated desorption performance of the future circular hadron collider beam screen |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/c76897feaf5145d39cc360fde9fd8e79 |
work_keys_str_mv |
AT lagonzalez photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT vbaglin photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT pchiggiato photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT cgarion photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT rkersevan photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT scasalbuoni photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT agrau photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT dsaezdejauregui photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT ibellafont photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT fperez photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen |
_version_ |
1718439918842150912 |