Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA)
Consumer Price Index (CPI) are the indicators used to measure the inflation and deflation of a group of goods and services in general. Forecasting CPI to be important as early detection in facing price hikes. This study uses the SSA and SARIMA. SARIMA a parametric model that requires various assumpt...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7746924b05242598b29d37fb3c5a49b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c7746924b05242598b29d37fb3c5a49b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c7746924b05242598b29d37fb3c5a49b2021-12-02T17:36:19ZPeramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA)2527-31592527-316710.15642/mantik.2017.3.2.74-82https://doaj.org/article/c7746924b05242598b29d37fb3c5a49b2017-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/166https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Consumer Price Index (CPI) are the indicators used to measure the inflation and deflation of a group of goods and services in general. Forecasting CPI to be important as early detection in facing price hikes. This study uses the SSA and SARIMA. SARIMA a parametric model that requires various assumptions while SSA is a nonparametric technique that is free from a variety of assumptions, but both methods require seasonal patterns in the data. Based on the research results, methods of SSA with length window(L) of 24 and a grouping of 4 (1 group of seasonal and 3 groups of trends) and SARIMA models of order (0,1,1), (0,1,1) 6 is the most accurate and reliable models in forecasting CPI to the value Padang Sidempuan City. Forecasting CPI Padang Sidempuan City for the next 5 months with SSA method and SARIMA (0,1,1), (0,1,1) 6 shows the pattern of a trend is likely to increase but forecasting the 5th month with SSA method showed a surge in the value of CPI high or high inflation will occur.Deltha Airuzsh LubisMuhamad Budiman JohraGumgum DarmawanDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleARIMA, CPI, Seasonal, Singular Spectral AnalysisMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 3, Iss 2, Pp 74-82 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ARIMA, CPI, Seasonal, Singular Spectral Analysis Mathematics QA1-939 |
spellingShingle |
ARIMA, CPI, Seasonal, Singular Spectral Analysis Mathematics QA1-939 Deltha Airuzsh Lubis Muhamad Budiman Johra Gumgum Darmawan Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
description |
Consumer Price Index (CPI) are the indicators used to measure the inflation and deflation of a group of goods and services in general. Forecasting CPI to be important as early detection in facing price hikes. This study uses the SSA and SARIMA. SARIMA a parametric model that requires various assumptions while SSA is a nonparametric technique that is free from a variety of assumptions, but both methods require seasonal patterns in the data. Based on the research results, methods of SSA with length window(L) of 24 and a grouping of 4 (1 group of seasonal and 3 groups of trends) and SARIMA models of order (0,1,1), (0,1,1) 6 is the most accurate and reliable models in forecasting CPI to the value Padang Sidempuan City. Forecasting CPI Padang Sidempuan City for the next 5 months with SSA method and SARIMA (0,1,1), (0,1,1) 6 shows the pattern of a trend is likely to increase but forecasting the 5th month with SSA method showed a surge in the value of CPI high or high inflation will occur. |
format |
article |
author |
Deltha Airuzsh Lubis Muhamad Budiman Johra Gumgum Darmawan |
author_facet |
Deltha Airuzsh Lubis Muhamad Budiman Johra Gumgum Darmawan |
author_sort |
Deltha Airuzsh Lubis |
title |
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
title_short |
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
title_full |
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
title_fullStr |
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
title_full_unstemmed |
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) |
title_sort |
peramalan indeks harga konsumen dengan metode singular spectral analysis (ssa) dan seasonal autoregressive integrated moving average (sarima) |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2017 |
url |
https://doaj.org/article/c7746924b05242598b29d37fb3c5a49b |
work_keys_str_mv |
AT delthaairuzshlubis peramalanindekshargakonsumendenganmetodesingularspectralanalysisssadanseasonalautoregressiveintegratedmovingaveragesarima AT muhamadbudimanjohra peramalanindekshargakonsumendenganmetodesingularspectralanalysisssadanseasonalautoregressiveintegratedmovingaveragesarima AT gumgumdarmawan peramalanindekshargakonsumendenganmetodesingularspectralanalysisssadanseasonalautoregressiveintegratedmovingaveragesarima |
_version_ |
1718379908516806656 |