Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
The purpose of this study was to assess the overall survival of patients with HGG using a nomogram which combines the optimized radiomics with deep signatures extracted from 3D Magnetic Resonance Images (MRI) as well as clinical predictors. One training cohort of 168 HGG patients and one validation...
Guardado en:
Autores principales: | Yutao Wang, Qian Shao, Shuying Luo, Randi Fu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7810ae845ff44afa3a0184320e5f28a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI
por: Qian ShaoYutao Wang, et al.
Publicado: (2021) -
Identification and validation of an autophagy-related signature for predicting survival in lower-grade glioma
por: Shaobin Feng, et al.
Publicado: (2021) -
Multiparametric MRI Radiomics for the Early Prediction of Response to Chemoradiotherapy in Patients With Postoperative Residual Gliomas: An Initial Study
por: Zhaotao Zhang, et al.
Publicado: (2021) -
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
por: Yang Li, et al.
Publicado: (2021) -
Differentiation of Brain Abscess From Cystic Glioma Using Conventional MRI Based on Deep Transfer Learning Features and Hand-Crafted Radiomics Features
por: Linlin Bo, et al.
Publicado: (2021)