An integrated approach of field, weather, and satellite data for monitoring maize phenology
Abstract Efficient, more accurate reporting of maize (Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phe...
Enregistré dans:
Auteurs principaux: | Luciana Nieto, Raí Schwalbert, P. V. Vara Prasad, Bradley J. S. C. Olson, Ignacio A. Ciampitti |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c7875ae560b54618815e0502ea516170 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fusing Geostationary Satellite Observations with Harmonized Landsat-8 and Sentinel-2 Time Series for Monitoring Field-Scale Land Surface Phenology
par: Yu Shen, et autres
Publié: (2021) -
QUADRIFILAR HELIX ANTENNA FOR WEATHER SATELLITE RECEPTION
par: ENOCH ADEAGBO, et autres
Publié: (2020) -
Studying phenological stages of cherry (Prunus avium L.) using field observations and satellite-derived vegetation indexes
par: von Bennewitz Alvarez,Eduardo, et autres
Publié: (2018) -
Characterizing bracken fern phenological cycle using time series data derived from Sentinel-2 satellite sensor.
par: Trylee Nyasha Matongera, et autres
Publié: (2021) -
Characterizing bracken fern phenological cycle using time series data derived from Sentinel-2 satellite sensor
par: Trylee Nyasha Matongera, et autres
Publié: (2021)