An integrated approach of field, weather, and satellite data for monitoring maize phenology
Abstract Efficient, more accurate reporting of maize (Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phe...
Guardado en:
Autores principales: | Luciana Nieto, Raí Schwalbert, P. V. Vara Prasad, Bradley J. S. C. Olson, Ignacio A. Ciampitti |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7875ae560b54618815e0502ea516170 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fusing Geostationary Satellite Observations with Harmonized Landsat-8 and Sentinel-2 Time Series for Monitoring Field-Scale Land Surface Phenology
por: Yu Shen, et al.
Publicado: (2021) -
QUADRIFILAR HELIX ANTENNA FOR WEATHER SATELLITE RECEPTION
por: ENOCH ADEAGBO, et al.
Publicado: (2020) -
Studying phenological stages of cherry (Prunus avium L.) using field observations and satellite-derived vegetation indexes
por: von Bennewitz Alvarez,Eduardo, et al.
Publicado: (2018) -
Characterizing bracken fern phenological cycle using time series data derived from Sentinel-2 satellite sensor.
por: Trylee Nyasha Matongera, et al.
Publicado: (2021) -
Characterizing bracken fern phenological cycle using time series data derived from Sentinel-2 satellite sensor
por: Trylee Nyasha Matongera, et al.
Publicado: (2021)