New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation

Abstract C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sara Bitam, Ahmad Elbahnsi, Geordie Creste, Iwona Pranke, Benoit Chevalier, Farouk Berhal, Brice Hoffmann, Nathalie Servel, Danielle Tondelier, Aurelie Hatton, Christelle Moquereau, Mélanie Faria Da Cunha, Alexandra Pastor, Agathe Lepissier, Alexandre Hinzpeter, Jean-Paul Mornon, Guillaume Prestat, Aleksander Edelman, Isabelle Callebaut, Christine Gravier-Pelletier, Isabelle Sermet-Gaudelus
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c78c19594a5d4a81b0e0face0bb082c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c78c19594a5d4a81b0e0face0bb082c4
record_format dspace
spelling oai:doaj.org-article:c78c19594a5d4a81b0e0face0bb082c42021-12-02T16:36:12ZNew insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation10.1038/s41598-021-83240-x2045-2322https://doaj.org/article/c78c19594a5d4a81b0e0face0bb082c42021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83240-xhttps://doaj.org/toc/2045-2322Abstract C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4–NBD1 interface.Sara BitamAhmad ElbahnsiGeordie CresteIwona PrankeBenoit ChevalierFarouk BerhalBrice HoffmannNathalie ServelDanielle TondelierAurelie HattonChristelle MoquereauMélanie Faria Da CunhaAlexandra PastorAgathe LepissierAlexandre HinzpeterJean-Paul MornonGuillaume PrestatAleksander EdelmanIsabelle CallebautChristine Gravier-PelletierIsabelle Sermet-GaudelusNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sara Bitam
Ahmad Elbahnsi
Geordie Creste
Iwona Pranke
Benoit Chevalier
Farouk Berhal
Brice Hoffmann
Nathalie Servel
Danielle Tondelier
Aurelie Hatton
Christelle Moquereau
Mélanie Faria Da Cunha
Alexandra Pastor
Agathe Lepissier
Alexandre Hinzpeter
Jean-Paul Mornon
Guillaume Prestat
Aleksander Edelman
Isabelle Callebaut
Christine Gravier-Pelletier
Isabelle Sermet-Gaudelus
New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
description Abstract C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4–NBD1 interface.
format article
author Sara Bitam
Ahmad Elbahnsi
Geordie Creste
Iwona Pranke
Benoit Chevalier
Farouk Berhal
Brice Hoffmann
Nathalie Servel
Danielle Tondelier
Aurelie Hatton
Christelle Moquereau
Mélanie Faria Da Cunha
Alexandra Pastor
Agathe Lepissier
Alexandre Hinzpeter
Jean-Paul Mornon
Guillaume Prestat
Aleksander Edelman
Isabelle Callebaut
Christine Gravier-Pelletier
Isabelle Sermet-Gaudelus
author_facet Sara Bitam
Ahmad Elbahnsi
Geordie Creste
Iwona Pranke
Benoit Chevalier
Farouk Berhal
Brice Hoffmann
Nathalie Servel
Danielle Tondelier
Aurelie Hatton
Christelle Moquereau
Mélanie Faria Da Cunha
Alexandra Pastor
Agathe Lepissier
Alexandre Hinzpeter
Jean-Paul Mornon
Guillaume Prestat
Aleksander Edelman
Isabelle Callebaut
Christine Gravier-Pelletier
Isabelle Sermet-Gaudelus
author_sort Sara Bitam
title New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
title_short New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
title_full New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
title_fullStr New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
title_full_unstemmed New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation
title_sort new insights into structure and function of bis-phosphinic acid derivatives and implications for cftr modulation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c78c19594a5d4a81b0e0face0bb082c4
work_keys_str_mv AT sarabitam newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT ahmadelbahnsi newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT geordiecreste newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT iwonapranke newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT benoitchevalier newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT faroukberhal newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT bricehoffmann newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT nathalieservel newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT danielletondelier newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT aureliehatton newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT christellemoquereau newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT melaniefariadacunha newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT alexandrapastor newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT agathelepissier newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT alexandrehinzpeter newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT jeanpaulmornon newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT guillaumeprestat newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT aleksanderedelman newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT isabellecallebaut newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT christinegravierpelletier newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
AT isabellesermetgaudelus newinsightsintostructureandfunctionofbisphosphinicacidderivativesandimplicationsforcftrmodulation
_version_ 1718383657569222656