Greedy sensor selection based on QR factorization

Abstract We address the problem of selecting a given number of sensor nodes in wireless sensor networks where noise-corrupted linear measurements are collected at the selected nodes to estimate the unknown parameter. Noting that this problem is combinatorial in nature and selection of sensor nodes f...

Full description

Saved in:
Bibliographic Details
Main Author: Yoon Hak Kim
Format: article
Language:EN
Published: SpringerOpen 2021
Subjects:
Online Access:https://doaj.org/article/c79239bb16b34a3fa90ba52b6cfe7dc9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We address the problem of selecting a given number of sensor nodes in wireless sensor networks where noise-corrupted linear measurements are collected at the selected nodes to estimate the unknown parameter. Noting that this problem is combinatorial in nature and selection of sensor nodes from a large number of nodes would require unfeasible computational cost, we propose a greedy sensor selection method that seeks to choose one node at each iteration until the desired number of sensor nodes are selected. We first apply the QR factorization to make the mean squared error (MSE) of estimation a simplified metric which is iteratively minimized. We present a simple criterion which enables selection of the next sensor node minimizing the MSE at iterations. We discuss that a near-optimality of the proposed method is guaranteed by using the approximate supermodularity and also make a complexity analysis for the proposed algorithm in comparison with different greedy selection methods, showing a reasonable complexity of the proposed method. We finally run extensive experiments to investigate the estimation performance of the different selection methods in various situations and demonstrate that the proposed algorithm provides a good estimation accuracy with a competitive complexity when compared with the other novel greedy methods.