Deep neural networks for active wave breaking classification
Abstract Wave breaking is an important process for energy dissipation in the open ocean and coastal seas. It drives beach morphodynamics, controls air-sea interactions, determines when ship and offshore structure operations can occur safely, and influences on the retrieval of ocean properties from s...
Guardado en:
Autores principales: | Caio Eadi Stringari, Pedro Veras Guimarães, Jean-François Filipot, Fabien Leckler, Rui Duarte |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c794f5a8c357497da7d41ffed41a0f97 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A hybrid deep neural network for classification of schizophrenia using EEG Data
por: Jie Sun, et al.
Publicado: (2021) -
Deep neural network-based classification of cardiotocograms outperformed conventional algorithms
por: Jun Ogasawara, et al.
Publicado: (2021) -
Based on improved deep convolutional neural network model pneumonia image classification.
por: Lingzhi Kong, et al.
Publicado: (2021) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Hirotoshi Takiyama, et al.
Publicado: (2018)