Predicting sex from retinal fundus photographs using automated deep learning
Abstract Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reported sex from retinal fundus photographs. A...
Enregistré dans:
Auteurs principaux: | Edward Korot, Nikolas Pontikos, Xiaoxuan Liu, Siegfried K. Wagner, Livia Faes, Josef Huemer, Konstantinos Balaskas, Alastair K. Denniston, Anthony Khawaja, Pearse A. Keane |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c79d88f9f4344e5db04de21644fcea1e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
par: Avinash V. Varadarajan, et autres
Publié: (2020) -
Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning
par: Diego R. Cervera, et autres
Publié: (2021) -
Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks
par: Ling-Ping Cen, et autres
Publié: (2021) -
Automated quantification of posterior vitreous inflammation: optical coherence tomography scan number requirements
par: Jan Henrik Terheyden, et autres
Publié: (2021) -
Artificial intelligence-based detection of epimacular membrane from color fundus photographs
par: Enhua Shao, et autres
Publié: (2021)