Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes
This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Pouyan Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c79dd694882744c4a5afd8680a2948dc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c79dd694882744c4a5afd8680a2948dc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c79dd694882744c4a5afd8680a2948dc2021-12-03T15:12:29ZMachine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes2588-287210.22115/scce.2021.302400.1357https://doaj.org/article/c79dd694882744c4a5afd8680a2948dc2021-10-01T00:00:00Zhttp://www.jsoftcivil.com/article_136759_ac647438733f6b7d898cc892fd60aa09.pdfhttps://doaj.org/toc/2588-2872This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML model, which predicts the phase label (LD or HD C-S-H, clinker etc.) belonging to that location. Artificial neural networks (ANN) and forest ensemble methods are used for classification. Confusion matrices and receiver-operator characteristic (ROC) curves are used to analyze the classification efficiency. It is shown that, for complex microstructures such as those of ultra-high performance (UHP) pastes, the classifier performs well when nanomechanical information augments the chemical intensity data. For simpler systems such as well-hydrated plain cement pastes, the classifier accurately predicts the phase label from the intensities of Ca, Al, and Si alone. The work enables fast-and-efficient phase identification and property forecasting from microstructural chemical maps.Emily FordKailasnath ManeparambilNarayanan NeithalathPouyan Pressarticlemachine learningnanoindentationchemical mappingmicrostructurecement pastesultra-high performance concreteTechnologyTENJournal of Soft Computing in Civil Engineering, Vol 5, Iss 4, Pp 1-20 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
machine learning nanoindentation chemical mapping microstructure cement pastes ultra-high performance concrete Technology T |
spellingShingle |
machine learning nanoindentation chemical mapping microstructure cement pastes ultra-high performance concrete Technology T Emily Ford Kailasnath Maneparambil Narayanan Neithalath Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
description |
This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML model, which predicts the phase label (LD or HD C-S-H, clinker etc.) belonging to that location. Artificial neural networks (ANN) and forest ensemble methods are used for classification. Confusion matrices and receiver-operator characteristic (ROC) curves are used to analyze the classification efficiency. It is shown that, for complex microstructures such as those of ultra-high performance (UHP) pastes, the classifier performs well when nanomechanical information augments the chemical intensity data. For simpler systems such as well-hydrated plain cement pastes, the classifier accurately predicts the phase label from the intensities of Ca, Al, and Si alone. The work enables fast-and-efficient phase identification and property forecasting from microstructural chemical maps. |
format |
article |
author |
Emily Ford Kailasnath Maneparambil Narayanan Neithalath |
author_facet |
Emily Ford Kailasnath Maneparambil Narayanan Neithalath |
author_sort |
Emily Ford |
title |
Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
title_short |
Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
title_full |
Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
title_fullStr |
Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
title_full_unstemmed |
Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes |
title_sort |
machine learning on microstructural chemical maps to classify component phases in cement pastes |
publisher |
Pouyan Press |
publishDate |
2021 |
url |
https://doaj.org/article/c79dd694882744c4a5afd8680a2948dc |
work_keys_str_mv |
AT emilyford machinelearningonmicrostructuralchemicalmapstoclassifycomponentphasesincementpastes AT kailasnathmaneparambil machinelearningonmicrostructuralchemicalmapstoclassifycomponentphasesincementpastes AT narayananneithalath machinelearningonmicrostructuralchemicalmapstoclassifycomponentphasesincementpastes |
_version_ |
1718373173824585728 |