Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes
This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML...
Guardado en:
Autores principales: | Emily Ford, Kailasnath Maneparambil, Narayanan Neithalath |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Pouyan Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c79dd694882744c4a5afd8680a2948dc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MECHANICAL PROPERTIES AND MICROSTRUCTURES OF REGENERATED CEMENT FROM WASTE CONCRETE
por: YILENG DU, et al.
Publicado: (2017) -
Investigation of the early-age performance and microstructure of nano-C–S–H blended cement-based materials
por: He Wei, et al.
Publicado: (2021) -
Experimental Investigation on Strength and Failure Characteristics of Cemented Paste Backfill
por: Zhihong Zhang, et al.
Publicado: (2021) -
Single Fiber Reflectance Spectroscopy for the Monitoring of Cement Paste
por: Pedro M. da Silva, et al.
Publicado: (2021) - Cement and concrete research