Ventricular outflow tract obstruction: An in-silico model to relate the obstruction to hemodynamic quantities in cardiac paediatric patients.

<h4>Background</h4>Right (R) or left (L) ventricular outflow tract (VOT) obstruction can be either a dynamic phenomenon or a congenital anatomic lesion, which requires a prompt and optimal timing of treatment to avoid a pathological ventricular remodelling.<h4>Objective</h4>T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giulia Comunale, Massimo Padalino, Carmelo Maiorana, Giovanni Di Salvo, Francesca M Susin
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c7b5d21f03e54b688b298fd856ba9400
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>Right (R) or left (L) ventricular outflow tract (VOT) obstruction can be either a dynamic phenomenon or a congenital anatomic lesion, which requires a prompt and optimal timing of treatment to avoid a pathological ventricular remodelling.<h4>Objective</h4>To develop a simple and reliable numerical tool able to relate the R/L obstruction size with the pressure gradient and the cardiac output. To provide indication of the obstruction severity and be of help in the clinical management of patients and designing the surgical treatment for obstruction mitigation.<h4>Methods</h4>Blood flow across the obstruction is described according to the classical theory of one-dimensional flow, with the obstruction uniquely characterized by its size. Hemodynamics of complete circulation is simulated according to the lumped parameter approach. The case of a 2 years-old baby is reproduced, with the occlusion placed in either the R/ or the L/VOT. Conditions from wide open to almost complete obstruction are reproduced.<h4>Results</h4>Both R/LVOT obstruction in the in-silico model resulted in an increased pressure gradient and a decreased cardiac output, proportional to the severity of the VOT obstruction and dependent on the R/L location of the obstruction itself, as it is clinically observed.<h4>Conclusion</h4>The in-silico model of ventricular obstruction which simulates pressure gradient and/or cardiac output agrees with clinical data, and is a first step towards the creation of a tool that can support the clinical management of patients from diagnosis to surgical treatments.