Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff293 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c7cf4104a3534f20a86d3e06336ff293 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c7cf4104a3534f20a86d3e06336ff2932021-12-02T18:37:16ZMachine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production10.1038/s41467-021-25831-w2041-1723https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff2932021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25831-whttps://doaj.org/toc/2041-1723Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve fatty alcohol production.Jonathan C. GreenhalghSarah A. FahlbergBrian F. PflegerPhilip A. RomeroNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jonathan C. Greenhalgh Sarah A. Fahlberg Brian F. Pfleger Philip A. Romero Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
description |
Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve fatty alcohol production. |
format |
article |
author |
Jonathan C. Greenhalgh Sarah A. Fahlberg Brian F. Pfleger Philip A. Romero |
author_facet |
Jonathan C. Greenhalgh Sarah A. Fahlberg Brian F. Pfleger Philip A. Romero |
author_sort |
Jonathan C. Greenhalgh |
title |
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
title_short |
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
title_full |
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
title_fullStr |
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
title_full_unstemmed |
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production |
title_sort |
machine learning-guided acyl-acp reductase engineering for improved in vivo fatty alcohol production |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff293 |
work_keys_str_mv |
AT jonathancgreenhalgh machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction AT sarahafahlberg machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction AT brianfpfleger machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction AT philiparomero machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction |
_version_ |
1718377825634877440 |