Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production

Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan C. Greenhalgh, Sarah A. Fahlberg, Brian F. Pfleger, Philip A. Romero
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff293
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7cf4104a3534f20a86d3e06336ff293
record_format dspace
spelling oai:doaj.org-article:c7cf4104a3534f20a86d3e06336ff2932021-12-02T18:37:16ZMachine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production10.1038/s41467-021-25831-w2041-1723https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff2932021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25831-whttps://doaj.org/toc/2041-1723Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve fatty alcohol production.Jonathan C. GreenhalghSarah A. FahlbergBrian F. PflegerPhilip A. RomeroNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jonathan C. Greenhalgh
Sarah A. Fahlberg
Brian F. Pfleger
Philip A. Romero
Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
description Fatty acyl reductases (FARs) are critical enzymes in the biosynthesis of fatty alcohols and have the ability to directly acces acyl-ACP substrates. Here, authors couple machine learning-based protein engineering framework with gene shuffling to optimize a FAR for the activity on acyl-ACP and improve fatty alcohol production.
format article
author Jonathan C. Greenhalgh
Sarah A. Fahlberg
Brian F. Pfleger
Philip A. Romero
author_facet Jonathan C. Greenhalgh
Sarah A. Fahlberg
Brian F. Pfleger
Philip A. Romero
author_sort Jonathan C. Greenhalgh
title Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
title_short Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
title_full Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
title_fullStr Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
title_full_unstemmed Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production
title_sort machine learning-guided acyl-acp reductase engineering for improved in vivo fatty alcohol production
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c7cf4104a3534f20a86d3e06336ff293
work_keys_str_mv AT jonathancgreenhalgh machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction
AT sarahafahlberg machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction
AT brianfpfleger machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction
AT philiparomero machinelearningguidedacylacpreductaseengineeringforimprovedinvivofattyalcoholproduction
_version_ 1718377825634877440