Data driven discovery of cyber physical systems
Discovery of hybrid dynamical models for real-world cyber-physical systems remains a challenge. This paper proposes a general framework for automating mechanistic modeling of hybrid dynamical systems from observed data with low computational complexity and noise resilience.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7daebc20a2d4e6b8ab01d1077cfe84d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Discovery of hybrid dynamical models for real-world cyber-physical systems remains a challenge. This paper proposes a general framework for automating mechanistic modeling of hybrid dynamical systems from observed data with low computational complexity and noise resilience. |
---|