Data driven discovery of cyber physical systems

Discovery of hybrid dynamical models for real-world cyber-physical systems remains a challenge. This paper proposes a general framework for automating mechanistic modeling of hybrid dynamical systems from observed data with low computational complexity and noise resilience.

Guardado en:
Detalles Bibliográficos
Autores principales: Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han Ding, Jorge Goncalves
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c7daebc20a2d4e6b8ab01d1077cfe84d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Discovery of hybrid dynamical models for real-world cyber-physical systems remains a challenge. This paper proposes a general framework for automating mechanistic modeling of hybrid dynamical systems from observed data with low computational complexity and noise resilience.