Data driven discovery of cyber physical systems
Discovery of hybrid dynamical models for real-world cyber-physical systems remains a challenge. This paper proposes a general framework for automating mechanistic modeling of hybrid dynamical systems from observed data with low computational complexity and noise resilience.
Enregistré dans:
Auteurs principaux: | Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han Ding, Jorge Goncalves |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c7daebc20a2d4e6b8ab01d1077cfe84d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Cyber–Physical Production Systems for Data-Driven, Decentralized, and Secure Manufacturing—A Perspective
par: Manu Suvarna, et autres
Publié: (2021) - Cyber-physical systems
-
Data Access Control Based on Blockchain in Medical Cyber Physical Systems
par: Fulong Chen, et autres
Publié: (2021) -
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
par: Daria Kurz, et autres
Publié: (2021) -
Model-Driven Engineering Tools and Languages for Cyber-Physical Systems–A Systematic Literature Review
par: Mustafa Abshir Mohamed, et autres
Publié: (2021)