Jules Horowitz Reactor Irradiation Devices: Inspection Methods proposal

Jules Horowitz Reactor (JHR) irradiation test devices (so called ADELINE and MADISON) must undergo a periodic inspection every 40 months (French ESP(N) Regulation). The first step of inspection proposal was performed from October 2019 to March 2020 and concerns application of non-destructive methods...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hillberg Seppo, Baque François, Gaillot Stéphane
Formato: article
Lenguaje:EN
Publicado: EDP Sciences 2021
Materias:
jhr
ndt
nde
Acceso en línea:https://doaj.org/article/c7dca2635bfb4a8c9e9bdbe30afdf523
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Jules Horowitz Reactor (JHR) irradiation test devices (so called ADELINE and MADISON) must undergo a periodic inspection every 40 months (French ESP(N) Regulation). The first step of inspection proposal was performed from October 2019 to March 2020 and concerns application of non-destructive methods for electron beam welds, while examining the possible methods and locations that could be utilized. This study has been performed in collaboration between VTT Technical Research Centre of Finland Ltd and French CEA with VTT employee secondment at CEA Cadarache. The initial conclusions of this work are the following: • Two inspection methods are likely needed. • Eddy current is likely suitable for surface examination while volumetric ultrasonic inspection can be used for tube bodies. • Inspection under-water in a storage pool (EPI) is likely the best option for location in the JHR. • Some automation and remote controls will be needed during the inspection process. The inspection area is quite large as the whole tube bodies will be inspected. • Internal surfaces located between the nested tubes likely cannot be inspected for corrosion and therefore, sealing the space from oxygen and water will be likely be the best option. • Experimental reference is a critical next step of the work to assess and qualify the inspection methods. As the next step, CEA will continue discussions on requirements of the mock-ups: for eddy current inspection, a Zircaloy-4 planar specimen with artificial reflectors is needed. For ultrasonic reference, a representative mock-up of the cylinder with a weld and artificial defect(s) is needed. The mock-up testing will provide an experimental reference to CIVA calculations as simulations of this work have been performed with CIVA software, which is extensively used in the industry and research organizations in simulation of non-destructive control. This study will allow further steps in the future, up to the qualification of inspection methods for JHR test devices.