Construction of 2-Peakon Solutions and Nonuniqueness for a Generalized mCH Equation
For the generalized mCH equation, we construct a 2-peakon solution on both the line and the circle, and we can control the size of the initial data. The two peaks at different speeds move in the same direction and eventually collide. This phenomenon is that the solution at the collision time is cons...
Enregistré dans:
Auteurs principaux: | Hao Yu, Aiyong Chen, Kelei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c7e561631d2342d5b4da5e9590ac803c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
New Traveling Wave Solutions and Interesting Bifurcation Phenomena of Generalized KdV-mKdV-Like Equation
par: Yiren Chen, et autres
Publié: (2021) -
A square-integrable spinor solution to non-interacting Dirac equations
par: Luca Fabbri, et autres
Publié: (2021) -
Asymptotic Behavior of Solution for Functional Evolution Equations with Stepanov Forcing Terms
par: Zhong-Hua Wu
Publié: (2021) -
Numerical Approximation of Generalized Burger’s-Fisher and Generalized Burger’s-Huxley Equation by Compact Finite Difference Method
par: Ravneet Kaur, et autres
Publié: (2021) -
Optimal Lp–Lq-Type Decay Rates of Solutions to the Three-Dimensional Nonisentropic Compressible Euler Equations with Relaxation
par: Rong Shen, et autres
Publié: (2021)