Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs. native ladybirds

Abstract Understanding the traits that might be linked with biological invasions represents a great challenge for preventing non-target effects on local biodiversity. In predatory insects, the ability to exploit habitats for oviposition and the physiological response to prey availability differs bet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gabriele Rondoni, Fulvio Ielo, Carlo Ricci, Eric Conti
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c7e5a64d5d7b457fb1797dd3e18900ef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Understanding the traits that might be linked with biological invasions represents a great challenge for preventing non-target effects on local biodiversity. In predatory insects, the ability to exploit habitats for oviposition and the physiological response to prey availability differs between species. Those species that respond more readily to environmental changes may confer to their offspring a competitive advantage over other species. Here, we tested the hypothesis that the invasive Harmonia axyridis (Coleoptera: Coccinellidae) makes better use of information from a plant-prey (Vicia faba - Aphis fabae) system compared to the native Oenopia conglobata. Y-tube olfactometer bioassays revealed that both species used olfactory cues from the system, but H. axyridis exhibited a more complete response. This species was also attracted by plants previously infested by aphids, indicating the capacity to exploit volatile synomones induced in plants by aphid attack. Oocyte resorption was investigated when different olfactory stimuli were provided under prey shortage and the readiness of new oogenesis was measured when prey was available again. H. axyridis exhibited higher plasticity in oogenesis related to the presence/absence of plant-aphid volatiles. Our results support the hypothesis that H. axyridis is more reactive than O. conglobata to olfactory cues from the plant-prey system.