A Class of Reduced-Order Regenerator Models

We present a novel class of reduced-order regenerator models that is based on Endoreversible Thermodynamics. The models rest upon the idea of an internally reversible (perfect) regenerator, even though they are not limited to the reversible description. In these models, the temperatures of the worki...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Raphael Paul, Karl Heinz Hoffmann
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c7e846df09e8435cb46cbe145459f9f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7e846df09e8435cb46cbe145459f9f4
record_format dspace
spelling oai:doaj.org-article:c7e846df09e8435cb46cbe145459f9f42021-11-11T16:02:14ZA Class of Reduced-Order Regenerator Models10.3390/en142172951996-1073https://doaj.org/article/c7e846df09e8435cb46cbe145459f9f42021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7295https://doaj.org/toc/1996-1073We present a novel class of reduced-order regenerator models that is based on Endoreversible Thermodynamics. The models rest upon the idea of an internally reversible (perfect) regenerator, even though they are not limited to the reversible description. In these models, the temperatures of the working gas that alternately streams out on the regenerator’s hot and cold sides are defined as functions of the state of the regenerator matrix. The matrix is assumed to feature a linear spatial temperature distribution. Thus, the matrix has only two degrees of freedom that can, for example, be identified with its energy and entropy content. The dynamics of the regenerator is correspondingly expressed in terms of balance equations for energy and entropy. Internal irreversibilities of the regenerator can be accounted for by introducing source terms to the entropy balance equation. Compared to continuum or nodal regenerator models, the number of degrees of freedom and numerical effort are reduced considerably. As will be shown, instead of the obvious choice of variables energy and entropy, if convenient, a different pair of variables can be used to specify the state of the regenerator matrix and formulate the regenerator’s dynamics. In total, we will discuss three variants of this endoreversible regenerator model, which we will refer to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">ES</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">EE</mi></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">EEn</mi></semantics></math></inline-formula>-regenerator models.Raphael PaulKarl Heinz HoffmannMDPI AGarticleregeneratornumerical modelendoreversible thermodynamicsstirlingvuilleumierirreversibilityTechnologyTENEnergies, Vol 14, Iss 7295, p 7295 (2021)
institution DOAJ
collection DOAJ
language EN
topic regenerator
numerical model
endoreversible thermodynamics
stirling
vuilleumier
irreversibility
Technology
T
spellingShingle regenerator
numerical model
endoreversible thermodynamics
stirling
vuilleumier
irreversibility
Technology
T
Raphael Paul
Karl Heinz Hoffmann
A Class of Reduced-Order Regenerator Models
description We present a novel class of reduced-order regenerator models that is based on Endoreversible Thermodynamics. The models rest upon the idea of an internally reversible (perfect) regenerator, even though they are not limited to the reversible description. In these models, the temperatures of the working gas that alternately streams out on the regenerator’s hot and cold sides are defined as functions of the state of the regenerator matrix. The matrix is assumed to feature a linear spatial temperature distribution. Thus, the matrix has only two degrees of freedom that can, for example, be identified with its energy and entropy content. The dynamics of the regenerator is correspondingly expressed in terms of balance equations for energy and entropy. Internal irreversibilities of the regenerator can be accounted for by introducing source terms to the entropy balance equation. Compared to continuum or nodal regenerator models, the number of degrees of freedom and numerical effort are reduced considerably. As will be shown, instead of the obvious choice of variables energy and entropy, if convenient, a different pair of variables can be used to specify the state of the regenerator matrix and formulate the regenerator’s dynamics. In total, we will discuss three variants of this endoreversible regenerator model, which we will refer to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">ES</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">EE</mi></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">EEn</mi></semantics></math></inline-formula>-regenerator models.
format article
author Raphael Paul
Karl Heinz Hoffmann
author_facet Raphael Paul
Karl Heinz Hoffmann
author_sort Raphael Paul
title A Class of Reduced-Order Regenerator Models
title_short A Class of Reduced-Order Regenerator Models
title_full A Class of Reduced-Order Regenerator Models
title_fullStr A Class of Reduced-Order Regenerator Models
title_full_unstemmed A Class of Reduced-Order Regenerator Models
title_sort class of reduced-order regenerator models
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c7e846df09e8435cb46cbe145459f9f4
work_keys_str_mv AT raphaelpaul aclassofreducedorderregeneratormodels
AT karlheinzhoffmann aclassofreducedorderregeneratormodels
AT raphaelpaul classofreducedorderregeneratormodels
AT karlheinzhoffmann classofreducedorderregeneratormodels
_version_ 1718432438882926592