Variation in selection constraints on teleost TLRs with emphasis on their repertoire in the Walking catfish, Clarias batrachus

Abstract The high degree of conservation of toll-like receptors (TLRs), and yet their subtle variations for better adaptation of species in the host–pathogen arms race make them worthy candidates for understanding evolution. We have attempted to track the trend of TLR evolution in the most diverse v...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manisha Priyam, Sanjay K. Gupta, Biplab Sarkar, T. R. Sharma, A. Pattanayak
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c7e960af82b74e5588e2e7b849da16c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The high degree of conservation of toll-like receptors (TLRs), and yet their subtle variations for better adaptation of species in the host–pathogen arms race make them worthy candidates for understanding evolution. We have attempted to track the trend of TLR evolution in the most diverse vertebrate group—teleosts, where Clarias batrachus was given emphasis, considering its traits for terrestrial adaptation. Eleven C. batrachus TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 22, 25, 26) were identified in this study which clustered in proximity to its Siluriformes relative orthologues in the phylogenetic analysis of 228 TLRs from 25 teleosts. Ten TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 21, 22) with at least 15 member orthologues for each alignment were processed for selection pressure and coevolutionary analysis. TLR1, 7, 8 and 9 were found to be under positive selection in the alignment-wide test. TLR1 also showed maximum episodic diversification in its clades while the teleost group Eupercaria showed the maximum divergence in their TLR repertoire. Episodic diversification was evident in C. batrachus TLR1 and 7 alignments. These results present a strong evidence of a divergent TLR repertoire in teleosts which may be contributing towards species-specific variation in TLR functions.