Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
Abstract The manual reading of capsule endoscopy (CE) videos in small bowel disease diagnosis is time-intensive. Algorithms introduced to automate this process are premature for real clinical applications, and multi-diagnosis using these methods has not been sufficiently validated. Therefore, we dev...
Guardado en:
Autores principales: | Sang Hoon Kim, Youngbae Hwang, Dong Jun Oh, Ji Hyung Nam, Ki Bae Kim, Junseok Park, Hyun Joo Song, Yun Jeong Lim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7ec7dda26254e068eb086a14b675a25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy
por: Ji Hyung Nam, et al.
Publicado: (2021) -
Gastric examination using a novel three-dimensional magnetically assisted capsule endoscope and a hand-held magnetic controller: A porcine model study.
por: Dong Jun Oh, et al.
Publicado: (2021) -
Small-Bowel Capsule Endoscopy—Optimizing Capsule Endoscopy in Clinical Practice
por: Fintan O’Hara, et al.
Publicado: (2021) -
A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor
por: Seyed Shahim Vedaei, et al.
Publicado: (2021) -
Kvasir-Capsule, a video capsule endoscopy dataset
por: Pia H. Smedsrud, et al.
Publicado: (2021)