Unit Commitment under Uncertainty using Data-Driven Optimization with Clustering Techniques
This paper proposes a novel robust unit commitment (UC) framework with data-driven disjunctive uncertainty sets for volatile wind power outputs, assisted by machine learning techniques. To flexibly identify the uncertainty space based on wind power forecast error data with disjunctive structures, th...
Enregistré dans:
Auteurs principaux: | Ning Zhao, Fengqi You |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIDIC Servizi S.r.l.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c7f5f5a04f724a3c8f5deb83551205b6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Heating Optimisation of a Multi-Zone Building’s Thermal Comfort Under Stochastic Condition using Data-Driven Model Predictive Control
par: Guoqing Hu, et autres
Publié: (2021) -
Robust Optimization of Heat Exchanger Network with Uncertainty in Inlet Temperatures of Streams
par: Rahul Sudhanshu, et autres
Publié: (2021) -
Economic and Environmental Sustainability of Waste Plastics Chemical Recycling from the Consequential Perspective
par: Xiang Zhao, et autres
Publié: (2021) -
Sustainable Design of Hybrid Energy Systems towards Carbon Neutrality
par: Xueyu Tian, et autres
Publié: (2021) -
Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
par: Athanasios Latinis, et autres
Publié: (2021)