Unit Commitment under Uncertainty using Data-Driven Optimization with Clustering Techniques
This paper proposes a novel robust unit commitment (UC) framework with data-driven disjunctive uncertainty sets for volatile wind power outputs, assisted by machine learning techniques. To flexibly identify the uncertainty space based on wind power forecast error data with disjunctive structures, th...
Guardado en:
Autores principales: | Ning Zhao, Fengqi You |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIDIC Servizi S.r.l.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7f5f5a04f724a3c8f5deb83551205b6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Heating Optimisation of a Multi-Zone Building’s Thermal Comfort Under Stochastic Condition using Data-Driven Model Predictive Control
por: Guoqing Hu, et al.
Publicado: (2021) -
Robust Optimization of Heat Exchanger Network with Uncertainty in Inlet Temperatures of Streams
por: Rahul Sudhanshu, et al.
Publicado: (2021) -
Economic and Environmental Sustainability of Waste Plastics Chemical Recycling from the Consequential Perspective
por: Xiang Zhao, et al.
Publicado: (2021) -
Sustainable Design of Hybrid Energy Systems towards Carbon Neutrality
por: Xueyu Tian, et al.
Publicado: (2021) -
Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
por: Athanasios Latinis, et al.
Publicado: (2021)