Quantitative prediction of grain boundary thermal conductivities from local atomic environments

Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.

Guardado en:
Detalles Bibliográficos
Autores principales: Susumu Fujii, Tatsuya Yokoi, Craig A. J. Fisher, Hiroki Moriwake, Masato Yoshiya
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.