Quantitative prediction of grain boundary thermal conductivities from local atomic environments
Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c7fe7ca741a14e9ea17673a391810703 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c7fe7ca741a14e9ea17673a3918107032021-12-02T16:49:43ZQuantitative prediction of grain boundary thermal conductivities from local atomic environments10.1038/s41467-020-15619-92041-1723https://doaj.org/article/c7fe7ca741a14e9ea17673a3918107032020-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15619-9https://doaj.org/toc/2041-1723Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.Susumu FujiiTatsuya YokoiCraig A. J. FisherHiroki MoriwakeMasato YoshiyaNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Susumu Fujii Tatsuya Yokoi Craig A. J. Fisher Hiroki Moriwake Masato Yoshiya Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
description |
Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries. |
format |
article |
author |
Susumu Fujii Tatsuya Yokoi Craig A. J. Fisher Hiroki Moriwake Masato Yoshiya |
author_facet |
Susumu Fujii Tatsuya Yokoi Craig A. J. Fisher Hiroki Moriwake Masato Yoshiya |
author_sort |
Susumu Fujii |
title |
Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
title_short |
Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
title_full |
Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
title_fullStr |
Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
title_full_unstemmed |
Quantitative prediction of grain boundary thermal conductivities from local atomic environments |
title_sort |
quantitative prediction of grain boundary thermal conductivities from local atomic environments |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703 |
work_keys_str_mv |
AT susumufujii quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments AT tatsuyayokoi quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments AT craigajfisher quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments AT hirokimoriwake quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments AT masatoyoshiya quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments |
_version_ |
1718383239707492352 |