Quantitative prediction of grain boundary thermal conductivities from local atomic environments

Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.

Guardado en:
Detalles Bibliográficos
Autores principales: Susumu Fujii, Tatsuya Yokoi, Craig A. J. Fisher, Hiroki Moriwake, Masato Yoshiya
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7fe7ca741a14e9ea17673a391810703
record_format dspace
spelling oai:doaj.org-article:c7fe7ca741a14e9ea17673a3918107032021-12-02T16:49:43ZQuantitative prediction of grain boundary thermal conductivities from local atomic environments10.1038/s41467-020-15619-92041-1723https://doaj.org/article/c7fe7ca741a14e9ea17673a3918107032020-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15619-9https://doaj.org/toc/2041-1723Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.Susumu FujiiTatsuya YokoiCraig A. J. FisherHiroki MoriwakeMasato YoshiyaNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Susumu Fujii
Tatsuya Yokoi
Craig A. J. Fisher
Hiroki Moriwake
Masato Yoshiya
Quantitative prediction of grain boundary thermal conductivities from local atomic environments
description Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.
format article
author Susumu Fujii
Tatsuya Yokoi
Craig A. J. Fisher
Hiroki Moriwake
Masato Yoshiya
author_facet Susumu Fujii
Tatsuya Yokoi
Craig A. J. Fisher
Hiroki Moriwake
Masato Yoshiya
author_sort Susumu Fujii
title Quantitative prediction of grain boundary thermal conductivities from local atomic environments
title_short Quantitative prediction of grain boundary thermal conductivities from local atomic environments
title_full Quantitative prediction of grain boundary thermal conductivities from local atomic environments
title_fullStr Quantitative prediction of grain boundary thermal conductivities from local atomic environments
title_full_unstemmed Quantitative prediction of grain boundary thermal conductivities from local atomic environments
title_sort quantitative prediction of grain boundary thermal conductivities from local atomic environments
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703
work_keys_str_mv AT susumufujii quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments
AT tatsuyayokoi quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments
AT craigajfisher quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments
AT hirokimoriwake quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments
AT masatoyoshiya quantitativepredictionofgrainboundarythermalconductivitiesfromlocalatomicenvironments
_version_ 1718383239707492352