Quantitative prediction of grain boundary thermal conductivities from local atomic environments
Connecting grain boundary structures to macroscopic thermal behaviour is an important step in materials analysis and design. Here the authors develop a physical model combined with a machine-learning approach to accurately predict thermal conductivities of various types of MgO grain boundaries.
Guardado en:
Autores principales: | Susumu Fujii, Tatsuya Yokoi, Craig A. J. Fisher, Hiroki Moriwake, Masato Yoshiya |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7fe7ca741a14e9ea17673a391810703 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Atomically ordered solute segregation behaviour in an oxide grain boundary
por: Bin Feng, et al.
Publicado: (2016) -
Direct observation of atomic-scale fracture path within ceramic grain boundary core
por: Shun Kondo, et al.
Publicado: (2019) -
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
por: Conrad W. Rosenbrock, et al.
Publicado: (2017) -
Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling
por: Maryam Khalkhali, et al.
Publicado: (2019) -
The effect of ultrasmall grain sizes on the thermal conductivity of nanocrystalline silicon thin films
por: Battogtokh Jugdersuren, et al.
Publicado: (2021)