Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c801b504e22a487a82b92f13215e2473 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c801b504e22a487a82b92f13215e2473 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c801b504e22a487a82b92f13215e24732021-11-18T00:04:58ZSelf-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation2169-353610.1109/ACCESS.2021.3124525https://doaj.org/article/c801b504e22a487a82b92f13215e24732021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9597511/https://doaj.org/toc/2169-3536Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised anomaly detection using self-supervised learning. We extend conventional self-supervised learning for an anomaly detection problem. In anomaly detection, anomalous patterns appear in the local regions of an image, so we employ <italic>dynamic local augmentation</italic> to generate a negative pair of the images from the normal training dataset. Specifically, in addition to learning the global representation of an image, our framework contrasts a normal sample to a locally augmented sample. To effectively apply the local augmentations regardless of a category or a random location of an image, we use dynamically weighted local augmentations to generate more suitable negative samples. We also present a novel scoring function for detecting unseen anomalous patterns. Our experiment demonstrates the effectiveness of our method, and we show that our framework achieves competitive performance compared to state-of-the-art methods on MVTec Anomaly Detection dataset.Seungdong YoaSeungjun LeeChiyoon KimHyunwoo J KimIEEEarticleAnomaly detectioncomputer visiondeep learningmachine learningself-supervised learningElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 147201-147211 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Anomaly detection computer vision deep learning machine learning self-supervised learning Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Anomaly detection computer vision deep learning machine learning self-supervised learning Electrical engineering. Electronics. Nuclear engineering TK1-9971 Seungdong Yoa Seungjun Lee Chiyoon Kim Hyunwoo J Kim Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
description |
Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised anomaly detection using self-supervised learning. We extend conventional self-supervised learning for an anomaly detection problem. In anomaly detection, anomalous patterns appear in the local regions of an image, so we employ <italic>dynamic local augmentation</italic> to generate a negative pair of the images from the normal training dataset. Specifically, in addition to learning the global representation of an image, our framework contrasts a normal sample to a locally augmented sample. To effectively apply the local augmentations regardless of a category or a random location of an image, we use dynamically weighted local augmentations to generate more suitable negative samples. We also present a novel scoring function for detecting unseen anomalous patterns. Our experiment demonstrates the effectiveness of our method, and we show that our framework achieves competitive performance compared to state-of-the-art methods on MVTec Anomaly Detection dataset. |
format |
article |
author |
Seungdong Yoa Seungjun Lee Chiyoon Kim Hyunwoo J Kim |
author_facet |
Seungdong Yoa Seungjun Lee Chiyoon Kim Hyunwoo J Kim |
author_sort |
Seungdong Yoa |
title |
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
title_short |
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
title_full |
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
title_fullStr |
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
title_full_unstemmed |
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation |
title_sort |
self-supervised learning for anomaly detection with dynamic local augmentation |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/c801b504e22a487a82b92f13215e2473 |
work_keys_str_mv |
AT seungdongyoa selfsupervisedlearningforanomalydetectionwithdynamiclocalaugmentation AT seungjunlee selfsupervisedlearningforanomalydetectionwithdynamiclocalaugmentation AT chiyoonkim selfsupervisedlearningforanomalydetectionwithdynamiclocalaugmentation AT hyunwoojkim selfsupervisedlearningforanomalydetectionwithdynamiclocalaugmentation |
_version_ |
1718425250842017792 |