Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation

Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seungdong Yoa, Seungjun Lee, Chiyoon Kim, Hyunwoo J Kim
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/c801b504e22a487a82b92f13215e2473
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!