Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised...
Guardado en:
Autores principales: | Seungdong Yoa, Seungjun Lee, Chiyoon Kim, Hyunwoo J Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c801b504e22a487a82b92f13215e2473 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learning Non-Parametric Surrogate Losses With Correlated Gradients
por: Seungdong Yoa, et al.
Publicado: (2021) -
NFAD: fixing anomaly detection using normalizing flows
por: Artem Ryzhikov, et al.
Publicado: (2021) -
Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning
por: Alina Ciocarlan, et al.
Publicado: (2021) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021) -
GenRadar: Self-Supervised Probabilistic Camera Synthesis Based on Radar Frequencies
por: Carsten Ditzel, et al.
Publicado: (2021)