Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c801b504e22a487a82b92f13215e2473 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!