Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation

Anomaly detection is an important problem for recent advances in machine learning. To this end, many attempts have emerged to detect unknown anomalies of the images by learning representations and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Seungdong Yoa, Seungjun Lee, Chiyoon Kim, Hyunwoo J Kim
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/c801b504e22a487a82b92f13215e2473
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!