Toric extremal Kähler-Ricci solitons are Kähler-Einstein
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8279ce7532948f68e31a4eafc168509 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c8279ce7532948f68e31a4eafc168509 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c8279ce7532948f68e31a4eafc1685092021-12-02T16:36:59ZToric extremal Kähler-Ricci solitons are Kähler-Einstein2300-744310.1515/coma-2017-0012https://doaj.org/article/c8279ce7532948f68e31a4eafc1685092017-12-01T00:00:00Zhttps://doi.org/10.1515/coma-2017-0012https://doaj.org/toc/2300-7443In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.Calamai SimonePetrecca DavidDe Gruyterarticleextremal kähler metricskähler-ricci solitonseinstein manifoldstoric manifolds53c2553c5558d19MathematicsQA1-939ENComplex Manifolds, Vol 4, Iss 1, Pp 179-182 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
extremal kähler metrics kähler-ricci solitons einstein manifolds toric manifolds 53c25 53c55 58d19 Mathematics QA1-939 |
spellingShingle |
extremal kähler metrics kähler-ricci solitons einstein manifolds toric manifolds 53c25 53c55 58d19 Mathematics QA1-939 Calamai Simone Petrecca David Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
description |
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions. |
format |
article |
author |
Calamai Simone Petrecca David |
author_facet |
Calamai Simone Petrecca David |
author_sort |
Calamai Simone |
title |
Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
title_short |
Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
title_full |
Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
title_fullStr |
Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
title_full_unstemmed |
Toric extremal Kähler-Ricci solitons are Kähler-Einstein |
title_sort |
toric extremal kähler-ricci solitons are kähler-einstein |
publisher |
De Gruyter |
publishDate |
2017 |
url |
https://doaj.org/article/c8279ce7532948f68e31a4eafc168509 |
work_keys_str_mv |
AT calamaisimone toricextremalkahlerriccisolitonsarekahlereinstein AT petreccadavid toricextremalkahlerriccisolitonsarekahlereinstein |
_version_ |
1718383657755869184 |