Toric extremal Kähler-Ricci solitons are Kähler-Einstein
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.
Guardado en:
Autores principales: | Calamai Simone, Petrecca David |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8279ce7532948f68e31a4eafc168509 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On Kähler-like and G-Kähler-like almost Hermitian manifolds
por: Kawamura Masaya
Publicado: (2020) -
Kähler-Einstein metrics: Old and New
por: Angella Daniele, et al.
Publicado: (2017) -
Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics
por: Bazzoni Giovanni, et al.
Publicado: (2017) -
Beta-almost Ricci solitons on Sasakian 3-manifolds
por: Majhi,Pradip, et al.
Publicado: (2019) -
Locally conformally Kähler solvmanifolds: a survey
por: Andrada A., et al.
Publicado: (2019)