Identification of genes associated with altered gene expression and m6A profiles during hypoxia using tensor decomposition based unsupervised feature extraction
Abstract Although hypoxia is a critical factor that can drive the progression of various diseases, the mechanism underlying hypoxia itself remains unclear. Recently, m6A has been proposed as an important factor driving hypoxia. Despite successful analyses, potential genes were not selected with stat...
Guardado en:
Autores principales: | Sanjiban Sekhar Roy, Y.-H. Taguchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8353c34d1dc4d088b8856d3d3ddc044 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PCA-based unsupervised feature extraction for gene expression analysis of COVID-19 patients
por: Kota Fujisawa, et al.
Publicado: (2021) -
Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension
por: Yang-Yang He, et al.
Publicado: (2021) -
Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium
por: Cédric Lorcé, et al.
Publicado: (2021) -
Identification of hypoxia-induced genes in human SGBS adipocytes by microarray analysis.
por: Kathrin Geiger, et al.
Publicado: (2011) -
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition
por: Timothy J. Durham, et al.
Publicado: (2018)