Universal Nonadiabatic Control of Small-Gap Superconducting Qubits

Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the ac...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Daniel L. Campbell, Yun-Pil Shim, Bharath Kannan, Roni Winik, David K. Kim, Alexander Melville, Bethany M. Niedzielski, Jonilyn L. Yoder, Charles Tahan, Simon Gustavsson, William D. Oliver
Format: article
Langue:EN
Publié: American Physical Society 2020
Sujets:
Accès en ligne:https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f82
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to nonidealities like the counterrotating term. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing—smaller than the environmental temperature—between two energy levels. We control this low-frequency CQB using solely baseband pulses, nonadiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal nonadiabatic control of low-frequency qubits is feasible using solely baseband pulses.