Universal Nonadiabatic Control of Small-Gap Superconducting Qubits

Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the ac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel L. Campbell, Yun-Pil Shim, Bharath Kannan, Roni Winik, David K. Kim, Alexander Melville, Bethany M. Niedzielski, Jonilyn L. Yoder, Charles Tahan, Simon Gustavsson, William D. Oliver
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f82
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c8545d1993684bfe973fecf5d74e2f82
record_format dspace
spelling oai:doaj.org-article:c8545d1993684bfe973fecf5d74e2f822021-12-02T12:17:09ZUniversal Nonadiabatic Control of Small-Gap Superconducting Qubits10.1103/PhysRevX.10.0410512160-3308https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f822020-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041051http://doi.org/10.1103/PhysRevX.10.041051https://doaj.org/toc/2160-3308Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to nonidealities like the counterrotating term. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing—smaller than the environmental temperature—between two energy levels. We control this low-frequency CQB using solely baseband pulses, nonadiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal nonadiabatic control of low-frequency qubits is feasible using solely baseband pulses.Daniel L. CampbellYun-Pil ShimBharath KannanRoni WinikDavid K. KimAlexander MelvilleBethany M. NiedzielskiJonilyn L. YoderCharles TahanSimon GustavssonWilliam D. OliverAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041051 (2020)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Daniel L. Campbell
Yun-Pil Shim
Bharath Kannan
Roni Winik
David K. Kim
Alexander Melville
Bethany M. Niedzielski
Jonilyn L. Yoder
Charles Tahan
Simon Gustavsson
William D. Oliver
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
description Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to nonidealities like the counterrotating term. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing—smaller than the environmental temperature—between two energy levels. We control this low-frequency CQB using solely baseband pulses, nonadiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal nonadiabatic control of low-frequency qubits is feasible using solely baseband pulses.
format article
author Daniel L. Campbell
Yun-Pil Shim
Bharath Kannan
Roni Winik
David K. Kim
Alexander Melville
Bethany M. Niedzielski
Jonilyn L. Yoder
Charles Tahan
Simon Gustavsson
William D. Oliver
author_facet Daniel L. Campbell
Yun-Pil Shim
Bharath Kannan
Roni Winik
David K. Kim
Alexander Melville
Bethany M. Niedzielski
Jonilyn L. Yoder
Charles Tahan
Simon Gustavsson
William D. Oliver
author_sort Daniel L. Campbell
title Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
title_short Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
title_full Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
title_fullStr Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
title_full_unstemmed Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
title_sort universal nonadiabatic control of small-gap superconducting qubits
publisher American Physical Society
publishDate 2020
url https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f82
work_keys_str_mv AT daniellcampbell universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT yunpilshim universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT bharathkannan universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT roniwinik universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT davidkkim universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT alexandermelville universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT bethanymniedzielski universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT jonilynlyoder universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT charlestahan universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT simongustavsson universalnonadiabaticcontrolofsmallgapsuperconductingqubits
AT williamdoliver universalnonadiabaticcontrolofsmallgapsuperconductingqubits
_version_ 1718394538344579072