Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the ac...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c8545d1993684bfe973fecf5d74e2f82 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c8545d1993684bfe973fecf5d74e2f822021-12-02T12:17:09ZUniversal Nonadiabatic Control of Small-Gap Superconducting Qubits10.1103/PhysRevX.10.0410512160-3308https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f822020-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041051http://doi.org/10.1103/PhysRevX.10.041051https://doaj.org/toc/2160-3308Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to nonidealities like the counterrotating term. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing—smaller than the environmental temperature—between two energy levels. We control this low-frequency CQB using solely baseband pulses, nonadiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal nonadiabatic control of low-frequency qubits is feasible using solely baseband pulses.Daniel L. CampbellYun-Pil ShimBharath KannanRoni WinikDavid K. KimAlexander MelvilleBethany M. NiedzielskiJonilyn L. YoderCharles TahanSimon GustavssonWilliam D. OliverAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041051 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Daniel L. Campbell Yun-Pil Shim Bharath Kannan Roni Winik David K. Kim Alexander Melville Bethany M. Niedzielski Jonilyn L. Yoder Charles Tahan Simon Gustavsson William D. Oliver Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
description |
Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an equivalence that emerges in quantum mechanics. While successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to nonidealities like the counterrotating term. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing—smaller than the environmental temperature—between two energy levels. We control this low-frequency CQB using solely baseband pulses, nonadiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal nonadiabatic control of low-frequency qubits is feasible using solely baseband pulses. |
format |
article |
author |
Daniel L. Campbell Yun-Pil Shim Bharath Kannan Roni Winik David K. Kim Alexander Melville Bethany M. Niedzielski Jonilyn L. Yoder Charles Tahan Simon Gustavsson William D. Oliver |
author_facet |
Daniel L. Campbell Yun-Pil Shim Bharath Kannan Roni Winik David K. Kim Alexander Melville Bethany M. Niedzielski Jonilyn L. Yoder Charles Tahan Simon Gustavsson William D. Oliver |
author_sort |
Daniel L. Campbell |
title |
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
title_short |
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
title_full |
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
title_fullStr |
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
title_full_unstemmed |
Universal Nonadiabatic Control of Small-Gap Superconducting Qubits |
title_sort |
universal nonadiabatic control of small-gap superconducting qubits |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/c8545d1993684bfe973fecf5d74e2f82 |
work_keys_str_mv |
AT daniellcampbell universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT yunpilshim universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT bharathkannan universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT roniwinik universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT davidkkim universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT alexandermelville universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT bethanymniedzielski universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT jonilynlyoder universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT charlestahan universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT simongustavsson universalnonadiabaticcontrolofsmallgapsuperconductingqubits AT williamdoliver universalnonadiabaticcontrolofsmallgapsuperconductingqubits |
_version_ |
1718394538344579072 |