Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production
Abstract Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic net...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c86015b0e51b4d16bf9adadc4799725a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c86015b0e51b4d16bf9adadc4799725a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c86015b0e51b4d16bf9adadc4799725a2021-12-02T15:05:26ZReconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production10.1038/s41598-017-06918-12045-2322https://doaj.org/article/c86015b0e51b4d16bf9adadc4799725a2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06918-1https://doaj.org/toc/2045-2322Abstract Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, respectively. Glycerol was identified as the optimal carbon source for the highest BC production. The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the physiology and BC production of K. nataicola.Heng ZhangChao YeNan XuChuntao ChenXiao ChenFanshu YuanYunhua XuJiazhi YangDongping SunNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Heng Zhang Chao Ye Nan Xu Chuntao Chen Xiao Chen Fanshu Yuan Yunhua Xu Jiazhi Yang Dongping Sun Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
description |
Abstract Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, respectively. Glycerol was identified as the optimal carbon source for the highest BC production. The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the physiology and BC production of K. nataicola. |
format |
article |
author |
Heng Zhang Chao Ye Nan Xu Chuntao Chen Xiao Chen Fanshu Yuan Yunhua Xu Jiazhi Yang Dongping Sun |
author_facet |
Heng Zhang Chao Ye Nan Xu Chuntao Chen Xiao Chen Fanshu Yuan Yunhua Xu Jiazhi Yang Dongping Sun |
author_sort |
Heng Zhang |
title |
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
title_short |
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
title_full |
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
title_fullStr |
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
title_full_unstemmed |
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production |
title_sort |
reconstruction of a genome-scale metabolic network of komagataeibacter nataicola rzs01 for cellulose production |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/c86015b0e51b4d16bf9adadc4799725a |
work_keys_str_mv |
AT hengzhang reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT chaoye reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT nanxu reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT chuntaochen reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT xiaochen reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT fanshuyuan reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT yunhuaxu reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT jiazhiyang reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction AT dongpingsun reconstructionofagenomescalemetabolicnetworkofkomagataeibacternataicolarzs01forcelluloseproduction |
_version_ |
1718388856857821184 |