Development of prediction model of steel fiber-reinforced concrete compressive strength using random forest algorithm combined with hyperparameter tuning and k-fold cross-validation
Because of the incorporation of discontinuous fibers, steel fiber-reinforced concrete (SFRC) outperforms regular concrete. However, due to its complexity and limited available data, the development of SFRC strength prediction techniques is still in its infancy when compared to that of standard concr...
Guardado en:
Autores principales: | Nadia Moneem Al-Abdaly, Salwa R. Al-Taai, Hamza Imran, Majed Ibrahim |
---|---|
Formato: | article |
Lenguaje: | EN RU UK |
Publicado: |
PC Technology Center
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c86932b3e07e4101964d6561d32e895a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cover & Preface JOSI 20(1) 2021
por: Hilma Raimona Zadry
Publicado: (2021) -
Determinants of E-commerce Adoption on Business Performance: A Study of MSMEs in Malang City, Indonesia
por: Abu Muna Almaududi Ausat, et al.
Publicado: (2021) -
Spare Parts Supplier Selection Design: A Case Study of A Railway Company
por: Robby Ady Asmara, et al.
Publicado: (2021) -
Development of a hyperparameter optimization method for recommendatory models based on matrix factorization
por: Alexander Nechaev, et al.
Publicado: (2021) -
Development of a hash algorithm based on cellular automata and chaos theory
por: Yuriy Dobrovolsky, et al.
Publicado: (2021)