Towards a novel monitor of intraoperative awareness: selecting paradigm settings for a movement-based brain-computer interface.

During 0.1-0.2% of operations with general anesthesia, patients become aware during surgery. Unfortunately, pharmacologically paralyzed patients cannot seek attention by moving. Their attempted movements may however induce detectable EEG changes over the motor cortex. Here, methods from the area of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yvonne M Blokland, Jason D R Farquhar, Jo Mourisse, Gert J Scheffer, Jos G C Lerou, Jörgen Bruhn
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c87bd8aff22a4ace9d7746009f9d4404
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:During 0.1-0.2% of operations with general anesthesia, patients become aware during surgery. Unfortunately, pharmacologically paralyzed patients cannot seek attention by moving. Their attempted movements may however induce detectable EEG changes over the motor cortex. Here, methods from the area of movement-based brain-computer interfacing are proposed as a novel direction in anesthesia monitoring. Optimal settings for development of such a paradigm are studied to allow for a clinically feasible system. A classifier was trained on recorded EEG data of ten healthy non-anesthetized participants executing 3-second movement tasks. Extensive analysis was performed on this data to obtain an optimal EEG channel set and optimal features for use in a movement detection paradigm. EEG during movement could be distinguished from EEG during non-movement with very high accuracy. After a short calibration session, an average classification rate of 92% was obtained using nine EEG channels over the motor cortex, combined movement and post-movement signals, a frequency resolution of 4 Hz and a frequency range of 8-24 Hz. Using Monte Carlo simulation and a simple decision making paradigm, this translated into a probability of 99% of true positive movement detection within the first two and a half minutes after movement onset. A very low mean false positive rate of <0.01% was obtained. The current results corroborate the feasibility of detecting movement-related EEG signals, bearing in mind the clinical demands for use during surgery. Based on these results further clinical testing can be initiated.