Multi-Terminal Memristive Devices Enabling Tunable Synaptic Plasticity in Neuromorphic Hardware: A Mini-Review
Neuromorphic computing based on spiking neural networks has the potential to significantly improve on-line learning capabilities and energy efficiency of artificial intelligence, specially for edge computing. Recent progress in computational neuroscience have demonstrated the importance of heterosyn...
Enregistré dans:
Auteurs principaux: | Yann Beilliard, Fabien Alibart |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c8a3b15aa4cc4bd8a0c8a9783d5a08bd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Markov Chain Abstractions of Electrochemical Reaction-Diffusion in Synaptic Transmission for Neuromorphic Computing
par: Margot Wagner, et autres
Publié: (2021) -
Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
par: Young Pyo Jeon, et autres
Publié: (2021) -
Toward Learning in Neuromorphic Circuits Based on Quantum Phase Slip Junctions
par: Ran Cheng, et autres
Publié: (2021) -
The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity
par: Chad W Sauvola, et autres
Publié: (2021) -
Bidirectional Electric-Induced Conductance Based on GeTe/Sb<sub>2</sub>Te<sub>3</sub> Interfacial Phase Change Memory for Neuro-Inspired Computing
par: Shin-young Kang, et autres
Publié: (2021)