LFG-500 inhibits the invasion of cancer cells via down-regulation of PI3K/AKT/NF-κB signaling pathway.

Cancer cell invasion, one of the crucial events in local growth and metastatic spread of tumors, possess a broad spectrum of mechanisms, especially altered expression of matrix metalloproteinases. LFG-500 is a novel synthesized flavonoid with strong anti-cancer activity, whose exact molecular mechan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chenglin Li, Fanni Li, Kai Zhao, Jing Yao, Yao Cheng, Li Zhao, Zhiyu Li, Na Lu, Qinglong Guo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c8a41dc2cd5b4c3f8235fd66f6422d2b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Cancer cell invasion, one of the crucial events in local growth and metastatic spread of tumors, possess a broad spectrum of mechanisms, especially altered expression of matrix metalloproteinases. LFG-500 is a novel synthesized flavonoid with strong anti-cancer activity, whose exact molecular mechanism remains incompletely understood. This current study was designed to examine the effects of LFG-500 on tumor metastasis using in vitro and in vivo assays. LFG-500 could inhibit adhesion, migration and invasion of MDA-MB-231 human breast carcinoma cells. Meanwhile, it reduced the activities and expression of MMP-2 and MMP-9 via suppressing the transcriptional activation of NF-κB rather than AP-1 or STAT3. Moreover, LFG-500 repressed TNF-α induced cell invasion through inhibiting NF-κB and subsequent MMP-9 activity. Further elucidation of the mechanism revealed that PI3K/AKT but not MAPK signaling pathway was involved in the inhibitory effect of LFG-500 on NF-κB activation. LFG-500 could also suppress lung metastasis of B16F10 murine melanoma cells in vivo. Taken together, these results demonstrated that LFG-500 could block cancer cell invasion via down-regulation of PI3K/AKT/NF-κB signaling pathway, which provides new evidence for the anti-cancer activity of LFG-500.