Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
At present, deep learning-based medical image diagnosis had achieved high performance in several diseases. However, the black-box nature of the convolutional neural network (CNN) limits their role in diagnosis. In this study, a novel interpretable diagnosis pipeline using the CNN model was proposed....
Guardado en:
Autores principales: | Peizhen Xie, Ke Zuo, Jie Liu, Mingliang Chen, Shuang Zhao, Wenjie Kang, Fangfang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8a87f1ace064cb594f76c517c762f96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
por: Tao Li, et al.
Publicado: (2021) -
Tic Disorder of Children Analyzed and Diagnosed by Magnetic Resonance Imaging Features under Convolutional Neural Network
por: Chunxia Wu, et al.
Publicado: (2021) -
Computer-Aided Diagnosis of Children with Cerebral Palsy under Deep Learning Convolutional Neural Network Image Segmentation Model Combined with Three-Dimensional Cranial Magnetic Resonance Imaging
por: Rui Yang, et al.
Publicado: (2021) -
Penetration Force And Cannula Sliding Profiles Of Different Pen Needles: The PICASSO Study [Erratum]
por: Leonardi L, et al.
Publicado: (2019) -
Application of U-Net with Global Convolution Network Module in Computer-Aided Tongue Diagnosis
por: Meng-Yi Li, et al.
Publicado: (2021)