A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter

Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation appro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shichun Yang, Sida Zhou, Yang Hua, Xinan Zhou, Xinhua Liu, Yuwei Pan, Heping Ling, Billy Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c8b762e012e94c5295ec00d15b98c844
record_format dspace
spelling oai:doaj.org-article:c8b762e012e94c5295ec00d15b98c8442021-12-02T13:30:51ZA parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter10.1038/s41598-021-84729-12045-2322https://doaj.org/article/c8b762e012e94c5295ec00d15b98c8442021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84729-1https://doaj.org/toc/2045-2322Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.Shichun YangSida ZhouYang HuaXinan ZhouXinhua LiuYuwei PanHeping LingBilly WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shichun Yang
Sida Zhou
Yang Hua
Xinan Zhou
Xinhua Liu
Yuwei Pan
Heping Ling
Billy Wu
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
description Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.
format article
author Shichun Yang
Sida Zhou
Yang Hua
Xinan Zhou
Xinhua Liu
Yuwei Pan
Heping Ling
Billy Wu
author_facet Shichun Yang
Sida Zhou
Yang Hua
Xinan Zhou
Xinhua Liu
Yuwei Pan
Heping Ling
Billy Wu
author_sort Shichun Yang
title A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
title_short A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
title_full A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
title_fullStr A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
title_full_unstemmed A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
title_sort parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended kalman filter
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844
work_keys_str_mv AT shichunyang aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT sidazhou aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT yanghua aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT xinanzhou aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT xinhualiu aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT yuweipan aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT hepingling aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT billywu aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT shichunyang parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT sidazhou parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT yanghua parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT xinanzhou parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT xinhualiu parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT yuweipan parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT hepingling parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
AT billywu parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter
_version_ 1718392940605210624