A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation appro...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c8b762e012e94c5295ec00d15b98c844 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c8b762e012e94c5295ec00d15b98c8442021-12-02T13:30:51ZA parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter10.1038/s41598-021-84729-12045-2322https://doaj.org/article/c8b762e012e94c5295ec00d15b98c8442021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84729-1https://doaj.org/toc/2045-2322Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.Shichun YangSida ZhouYang HuaXinan ZhouXinhua LiuYuwei PanHeping LingBilly WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shichun Yang Sida Zhou Yang Hua Xinan Zhou Xinhua Liu Yuwei Pan Heping Ling Billy Wu A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
description |
Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions. |
format |
article |
author |
Shichun Yang Sida Zhou Yang Hua Xinan Zhou Xinhua Liu Yuwei Pan Heping Ling Billy Wu |
author_facet |
Shichun Yang Sida Zhou Yang Hua Xinan Zhou Xinhua Liu Yuwei Pan Heping Ling Billy Wu |
author_sort |
Shichun Yang |
title |
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
title_short |
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
title_full |
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
title_fullStr |
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
title_full_unstemmed |
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter |
title_sort |
parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended kalman filter |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844 |
work_keys_str_mv |
AT shichunyang aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT sidazhou aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT yanghua aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT xinanzhou aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT xinhualiu aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT yuweipan aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT hepingling aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT billywu aparameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT shichunyang parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT sidazhou parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT yanghua parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT xinanzhou parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT xinhualiu parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT yuweipan parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT hepingling parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter AT billywu parameteradaptivemethodforstateofchargeestimationoflithiumionbatterieswithanimprovedextendedkalmanfilter |
_version_ |
1718392940605210624 |