A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation appro...
Guardado en:
Autores principales: | Shichun Yang, Sida Zhou, Yang Hua, Xinan Zhou, Xinhua Liu, Yuwei Pan, Heping Ling, Billy Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks.
por: Xiaodian Sun, et al.
Publicado: (2008) -
Photo-accelerated fast charging of lithium-ion batteries
por: Anna Lee, et al.
Publicado: (2019) -
Shear wave imaging and classification using extended Kalman filter and decision tree algorithm
por: Tran Quang-Huy, et al.
Publicado: (2021) -
Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries
por: Minsung Baek, et al.
Publicado: (2021) -
Lithium lanthanum titanate perovskite as an anode for lithium ion batteries
por: Lu Zhang, et al.
Publicado: (2020)