A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
Abstract An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation appro...
Enregistré dans:
Auteurs principaux: | Shichun Yang, Sida Zhou, Yang Hua, Xinan Zhou, Xinhua Liu, Yuwei Pan, Heping Ling, Billy Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c8b762e012e94c5295ec00d15b98c844 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks.
par: Xiaodian Sun, et autres
Publié: (2008) -
Photo-accelerated fast charging of lithium-ion batteries
par: Anna Lee, et autres
Publié: (2019) -
Shear wave imaging and classification using extended Kalman filter and decision tree algorithm
par: Tran Quang-Huy, et autres
Publié: (2021) -
Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries
par: Minsung Baek, et autres
Publié: (2021) -
Lithium lanthanum titanate perovskite as an anode for lithium ion batteries
par: Lu Zhang, et autres
Publié: (2020)