Pixel-Level Kernel Estimation for Blind Super-Resolution
Throughout the past several years, deep learning-based models have achieved success in super-resolution (SR). The majority of these works assume that low-resolution (LR) images are ‘uniformly’ degraded from their corresponding high-resolution (HR) images using predefined blur k...
Guardado en:
Autores principales: | Jaihyun Lew, Euiyeon Kim, Jae-Pil Heo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8c65f021cb94f388335cb8262fbb319 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Blind Image Super Resolution Using Deep Unsupervised Learning
por: Kazuhiro Yamawaki, et al.
Publicado: (2021) -
A New Full-Reference Image Quality Metric for Motion Blur Profile Characterization
por: Mohammad Abdullah-Al-Mamun, et al.
Publicado: (2021) -
An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
por: Mirosław Kornatka, et al.
Publicado: (2021) -
Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model
por: Tomas Ruzgas, et al.
Publicado: (2021) -
Tr(R2) control charts based on kernel density estimation for monitoring multivariate variability process
por: Muhammad Mashuri, et al.
Publicado: (2019)