A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
Abstract Alzheimer’s disease (AD) is the most common type of dementia. Its diagnosis and progression detection have been intensively studied. Nevertheless, research studies often have little effect on clinical practice mainly due to the following reasons: (1) Most studies depend mainly on a single m...
Guardado en:
Autores principales: | Shaker El-Sappagh, Jose M. Alonso, S. M. Riazul Islam, Ahmad M. Sultan, Kyung Sup Kwak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8e4d8f3940b4b0d82655cd0baa4c176 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
por: Gabriel Ichcanziho Pérez-Landa, et al.
Publicado: (2021) -
Untangling hybrid hydrological models with explainable artificial intelligence
por: Daniel Althoff, et al.
Publicado: (2021) -
A Systematic Review of Human–Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques
por: Mobeen Nazar, et al.
Publicado: (2021) -
Multimodal MRI Analysis of Cervical Cancer on the Basis of Artificial Intelligence Algorithm
por: Bin Wang, et al.
Publicado: (2021) -
Mitigating belief projection in explainable artificial intelligence via Bayesian teaching
por: Scott Cheng-Hsin Yang, et al.
Publicado: (2021)