Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities
Abstract The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision makin...
Guardado en:
Autores principales: | Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Inge W. M. van Uden, Clara I. Sanchez, Geert Litjens, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c8edbcfcdad649f9906176888436eca7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
White Matter and Gray Matter Segmentation in 4D Computed Tomography
por: Rashindra Manniesing, et al.
Publicado: (2017) -
White matter hyperintensity in different migraine subtypes
por: L. A. Dobrynina, et al.
Publicado: (2021) -
Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System
por: Wei Shan, et al.
Publicado: (2021) -
Volumetric breast density estimation from full-field digital mammograms: a validation study.
por: Albert Gubern-Mérida, et al.
Publicado: (2014) -
The influence of white matter hyperintensity on cognitive impairment in Parkinson's disease
por: Hailing Liu, et al.
Publicado: (2021)