Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles

Abstract Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marika Comegna, Gemma Conte, Andrea Patrizia Falanga, Maria Marzano, Gustavo Cernera, Antonella Miriam Di Lullo, Felice Amato, Nicola Borbone, Stefano D’Errico, Francesca Ungaro, Ivana d’Angelo, Giorgia Oliviero, Giuseppe Castaldo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c90d998c17c94a5e9958764703a866ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c90d998c17c94a5e9958764703a866ce
record_format dspace
spelling oai:doaj.org-article:c90d998c17c94a5e9958764703a866ce2021-12-02T17:05:46ZAssisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles10.1038/s41598-021-85549-z2045-2322https://doaj.org/article/c90d998c17c94a5e9958764703a866ce2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85549-zhttps://doaj.org/toc/2045-2322Abstract Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core–shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.Marika ComegnaGemma ConteAndrea Patrizia FalangaMaria MarzanoGustavo CerneraAntonella Miriam Di LulloFelice AmatoNicola BorboneStefano D’ErricoFrancesca UngaroIvana d’AngeloGiorgia OlivieroGiuseppe CastaldoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Marika Comegna
Gemma Conte
Andrea Patrizia Falanga
Maria Marzano
Gustavo Cernera
Antonella Miriam Di Lullo
Felice Amato
Nicola Borbone
Stefano D’Errico
Francesca Ungaro
Ivana d’Angelo
Giorgia Oliviero
Giuseppe Castaldo
Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
description Abstract Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core–shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.
format article
author Marika Comegna
Gemma Conte
Andrea Patrizia Falanga
Maria Marzano
Gustavo Cernera
Antonella Miriam Di Lullo
Felice Amato
Nicola Borbone
Stefano D’Errico
Francesca Ungaro
Ivana d’Angelo
Giorgia Oliviero
Giuseppe Castaldo
author_facet Marika Comegna
Gemma Conte
Andrea Patrizia Falanga
Maria Marzano
Gustavo Cernera
Antonella Miriam Di Lullo
Felice Amato
Nicola Borbone
Stefano D’Errico
Francesca Ungaro
Ivana d’Angelo
Giorgia Oliviero
Giuseppe Castaldo
author_sort Marika Comegna
title Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
title_short Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
title_full Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
title_fullStr Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
title_full_unstemmed Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
title_sort assisting pna transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c90d998c17c94a5e9958764703a866ce
work_keys_str_mv AT marikacomegna assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT gemmaconte assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT andreapatriziafalanga assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT mariamarzano assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT gustavocernera assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT antonellamiriamdilullo assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT feliceamato assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT nicolaborbone assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT stefanoderrico assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT francescaungaro assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT ivanadangelo assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT giorgiaoliviero assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
AT giuseppecastaldo assistingpnatransportthroughcysticfibrosishumanairwayepitheliawithbiodegradablehybridlipidpolymernanoparticles
_version_ 1718381817110724608