Performance Study of N-grams in the Analysis of Sentiments
In this work, a study investigation was carried out using n-grams to classify sentiments with different machine learning and deep learning methods. We used this approach, which combines existing techniques, with the problem of predicting sequence tags to understand the advantages and problems confr...
Guardado en:
Autores principales: | O. E. Ojo, A. Gelbukh, H. Calvo, O. O. Adebanji |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nigerian Society of Physical Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9218d7144f94c5d9b53e5401a12c6eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism During Covid-19 Pandemic
por: Ram Krishn Mishra, et al.
Publicado: (2021) -
Weibo Text Sentiment Analysis Based on BERT and Deep Learning
por: Hongchan Li, et al.
Publicado: (2021) -
Topic-Based Document-Level Sentiment Analysis Using Contextual Cues
por: Ciprian-Octavian Truică, et al.
Publicado: (2021) -
Benchmarking Deep Learning Methods for Aspect Level Sentiment Classification
por: Tanu Sharma, et al.
Publicado: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
por: Ruba Obiedat, et al.
Publicado: (2021)