ANFIC: Image Compression Using Augmented Normalizing Flows
This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows (ANF). ANF is a new type of flow model, which stacks multiple variational autoencoders (VAE) for greater model expressiveness. The VAE-based image compression has gone mainstream,...
Enregistré dans:
Auteurs principaux: | Yung-Han Ho, Chih-Chun Chan, Wen-Hsiao Peng, Hsueh-Ming Hang, Marek Domanski |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c929fe6d235b4cfdaefe91c5b076a3cc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Learned Image Compression With Separate Hyperprior Decoders
par: Zhao Zan, et autres
Publié: (2021) -
Rate-Distortion Optimized Encoding for Deep Image Compression
par: Michael Schafer, et autres
Publié: (2021) -
End-to-End Compression Towards Machine Vision: Network Architecture Design and Optimization
par: Shurun Wang, et autres
Publié: (2021) -
REDUCCIÓN DE LOS TIEMPOS DE ADQUISICIÓN DE IMÁGENES POR RESONANCIA MAGNÉTICA UTILIZANDO TÉCNICAS DE COMPRESSED SENSING
par: Sing-Long C,Carlos, et autres
Publié: (2009) -
Guest Editorial Circuits and Systems for Flexible Electronics
par: Lian Yong, et autres
Publié: (2021)