Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as a particles with low-density and diameter (5 mm) in a (9.2 cm) inner...
Enregistré dans:
Auteur principal: | Amer A. Abdulrahman |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Al-Khwarizmi College of Engineering – University of Baghdad
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c92cc1c1adee4917ad9edb7882c3cfd5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
par: Amer A. Abdulrahman
Publié: (2017) -
Prediction of Equilibrium Mixing Index and Optimum Mixing Time for Three solid materials in Fluidized Column
par: Abbas H. Sulaymon, et autres
Publié: (2010) -
Effects of Gasification Temperature and Equivalence Ratio on Gasification Performance and Tar Generation of Air Fluidized Bed Gasification Using Raw and Torrefied Empty Fruit Bunch
par: Suriyati Saleh, et autres
Publié: (2021) -
A computational study of a multi-solid-liquid fluidized bed incorporating inclined channels
par: Syed Naveedul Hasan, et autres
Publié: (2021) -
Hybrid fuzzy-GMC control of gas-phase propylene copolymerization in fluidized bed reactors
par: Nazratul Fareha Salahuddin, et autres
Publié: (2021)